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COMMENT 

Optimisation of parametrised perturbative approximations to 
wavefunctions?' 

S K Kauffmann and S M Perez 
Department of Physics, University of Cape Town, Rondebosch 7700, Cape Province, 
Republic of South Africa 

Received 18 August 1986, in final form 7 October 1986 

Abstract. Previous work by the authors justified a point-by-point optimisation procedure 
for parametrised perturbative approximations to wavefunctions by appealing to a principle 
of minimal sensitivity. Here it is shown that, i f  the diagonal matrix elements of the 
perturbation vanish (which can always be arranged via a simple redefinition of the un- 
perturbed Hamiltonian), then the optimisation procedure is also justified by an underlying 
stationary principle, with the nth-order perturbative approximations being stationary to 
that order. 

In previous work (Kauffmann and  Perez 1984, 1986), Stevenson's principle of minimal 
sensitivity ( PMS) (Stevenson 1981) was used to justify the point-by-point optimisation 
of parametrised perturbative approximations to wavefunctions. As PMS is intuitively, 
rather than rigorously, based, it is always of interest to seek an  independent justification 
for its use in a given application (Stevenson 1981). It is the purpose of this comment 
to point out that a certain class of perturbative approximations to wavefunctions is in 
fact stationary with respect to variation of its unperturbed basis set about the exact 
eigenbasis-indeed the nth-order perturbative approximation turns out to be not only 
stationary but stationary to the nth order. Thus, for these particular perturbative 
wavefunction approximations, point-by-point variational optimisation is justified by 
an underlying stationary principle as well as by PMS. 

The perturbative wavefunction approximations in question are entirely determined 
given any complete orthonormal unperturbed basis set {14?))}, which we shall regard 
as real in order to avoid inessential phase ambiguities. An unperturbed Hamiltonian 
Ho is constructed using the diagonal matrix elements of the full Hamiltonian H 
(Rubinstejn and Yaris 1971), 

(1) 

The normal Rayleigh-Schrodinger perturbative wavefunction contributions, I$!,:)), 
I$:'), . . . , I$:)), . . . , are calculated (Messiah 1963), with the nth-order perturbative 
approximation I4E.I. , " I )  to the exact eigenfunction 14,) of H being the sum of these 
contributions through order n,  

(2) 

Ho = c I Cb 'k" ))( 4 koi I ff I 4 \"))( 4 ',")I. 
h 

(0.1. , n )  13, ) = l ~ ~ ' ) + l $ ~ ~ ' ) + . . . + l ~ ~ ' )  
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where I$:') has the expansion 

The expansion coefficients (4p'l$:)) are messy to write down in the general case, 
being a sum over expressions whose numerators consist of n-fold products of the 
matrix elements of the perturbation V = H - Ho and whose denominators consist of 
n-fold products of differences of diagonal matrix elements of H , .  The essential 
difference between the present technique, based on the unperturbed Ho of equation 
( l ) ,  and the usual approach which permits an arbitrary unperturbed H , ,  is that the 
diagonal matrix elements of V vanish here. Hence only off-diagonal matrix elements 
of V survive in our numerators above and these are in turn equal to the corresponding 
off-diagonal matrix elements of H itself. Also the diagonal matrix elements of Ho 
occurring in our denominators above may be replaced by the corresponding diagonal 
matrix elements of H itself. Thus the expansion coefficients of equation (3) and hence 
the perturbative wavefunction approximation 1 $E*'."*"') of equation ( 2 )  can be 
expressed entirely in terms of the exact Hamiltonian H and the unperturbed basis set 
{14(ko))}. (This point was apparently not fully appreciated by Rubinstejn and Yaris 
(1971).) 

We now proceed to show that the functional l $ ~ * ' 9 - ~ v n ) )  is stationary to the nth order 
for variation of {l"J'io')} about {I&)}, the exact eigenbasis of H .  This variation may be 
formally expressed in terms of { I  ti&)}, where 

I = I $ k )  + 184,) (4) 

and the orthonormality and reality of {lq5io')} and { I $ k ) }  are imposed as restrictions on 
the variation set {la&)}. From the above discussion we have seen that the expansion 
coefficients (4p)l$p)} of equation (3) consist of sums over n-fold products of off- 
diagonal matrix elements of H, each divided by an n-fold product of differences of 
diagonal matrix elements of H. Since the off-diagonal matrix elements of H clearly 
vanish for the H eigenbasis about which we vary {(4(ko))}, we see that (4io'l$:)) and 
hence I$(mn)} are of order n in the variations {la&)}. Now the sum over n of all the 
contributions 1 $',"I)} is the exact result I$,,,) regardless of the choice of unperturbed 
basis {/4(ko))}, and thus is independent of the variations {18&)}. Indeed, we may 
re-express the I $ E 9 ' * , - 3 n ) )  of equation ( 2 )  as follows: 

Since I+,,,) is independent of the variations {IS&)} and I$:+')), i = 1 , 2 , .  . . , is of order 
( n  + i)  in them, it is clear that I$',O-'-"') is stationary to order n in these variations. 

For the case n = 1 this theorem was derived using a constructive approach by 
Biedenharn and Blatt (1954) and Kikuta (1954, 1955). Kikuta also mentioned an 
iteration method as a means for obtaining a wavefunction approximation which is 
stationary to a higher order. Biedenharn and Blatt do not consider possible applica- 
tions, while Kikuta only uses these stationary perturbative wavefunction approxima- 
tions as sophisticated Rayleigh-Ritz trial functions, useful for optimising approxima- 
tions to eigenvalues of H. The mechanics of how to make use of the stationary property 
of these wavefunction approximations for direct wavefunction (as opposed to eigen- 
value) optimisation appear to have eluded these authors. The key to this matter is the 
realisation that the stationary property of 1 $',o"'".'"') implies that ( X I  $E-'-"') is separately 
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stationary f o r  every value of x (of course, this applies equally well to representations 
other than the configuration space { l x ) }  one). Thus, if the unperturbed basis set 
{14p)(A))} depends on a parameter A, implying that I $ ‘ , “ 3 ’ 3 , , . 3 “ ’ )  also depends on A, we 
may optimise this parametrised family of perturbative wavefunction approximations 
directly by requiring that 

a( $‘,.I ..... n i ( A ) ) / d A  = O  

at each value of x. In  this way A is obtained as a function of x, A(x) and the optimised 
wavefunction is the object ( X I  $‘,“*I* 9 n ) ( A  ( x ) ) ) .  The above discussion simply parallels 
that set forth in our previous work (Kauffmann and Perez 1984, 1986), in which PMS 

rather than an underlying stationary principle was used as the justification for the 
procedure. Approximations to expectation values of Hermitian operators, in the form 
($‘,“,I’ ,n ) (  A ) I Q 1  $‘,“.I. . “ ’ ( A ) )  (where Q rieed not be H ) ,  can also be directly optimised 
in a manner analogous to that of equation (6). In such cases A will have no functional 
dependence. 

We note here that in practice the parametrised unperturbed basis { I  4io’( A ) ) }  is to 
be chosen as close to the exact eigenbasis {I$,)} of H as one’s skill and  understanding 
of the physics permits. It could, for example, be the known eigenbasis of a solvable 
parametrised Hamiltonian which well approximates H. The stationarity of the perturba- 
tive wavefunctions in {14blpi)} at {I$,)} makes it clear that the better the approximation 
of ((4blp))) to {I$,)}, the better the results can be expected to be. This is completely 
analogous to the practical criterion for choosing the parametrised trial ground state 
lc$do’(A )) in the familiar Rayleigh-Ritz variational method. 

Probably the main drawback of this stationary perturbative optimisation approach 
is that the infinite sums inherent in calculating l$‘o- ’3  . “ ’ ( A ) )  are difficult to carry out, 
particularly as the perturbative energy denominators are complicated by the special 
form of Ho given by equation (1). This complication would seem effectively to rule 
out certain techniques for carrying out the perturbative sums, such as that of Dalgarno 
and Lewis (1955). However, in problems where the perturbative sums turn out to be 
finite or essentially so, as in anharmonic oscillator calculations and  perhaps certain 
quantum field theories, the method could prove to be quite valuable. Work along these 
lines is currently being undertaken. 
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